Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables
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PART 1: Multi-dimensional distributions
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1 Introduction

e |t is sometimes of interest to draw conclusions about multiple random
variables at once
As in the univariate case, we will start with cumulative distribution

functions

These exist for any set of k random variables

Joint density functions will be introduced afterwards
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2 Joint distribution functions

2.1 Cumulative distribution functions

Definition Joint cumulative distribution function Let X, X, ...,. X,
be k random variables all defined on the same probability space
(Q, o/, P[-]). The joint cumulative distribution function of X,, ..., Xy,

denoted by Fy, .. x. (-, ..., -),is defined as P[X; < x,;...; X} < x,] for

e Ajoint cumulative distribution function is a function with domain
Euclidean k space and counterdomain the interval [0,1].

e If k=2, then the joint cumulative distribution function is a function of two
variables, and so its domain is simply the xy plane.
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EXAMPLE Consider the experiment of tossing two tetrahedra (regular
four-sided polyhedron) each with sides labeled 1 to 4. Let X denote the
number on the downturned face of the first tetrahedron and Y the larger
of the downturned numbers. The goalis to find Fy (-, -), the joint cu-
mulative distribution function of X and ¥. Observe first that the random
variables X and Y jointly take on only the values

(1, 1), (1, 2), (1, 3), (1, 4),
(2,2), (2, 3), (2, 4),

(3, 3). (3, 4).

(4, 4).
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The sample space for this experiment is displayed . The 16
sample points are assumed to be equally likely. Our objective is to find
Fy y(x, y) for each point (x, y). As an example let (x, y) = (2, 3), and
find Fy y(2, 3) =P[X<2; Y<3]. Now the event {X' <2 and Y < 3}
corresponds to the encircled sample points in Fig. ; hence Fy y(2, 3) =
5. Similarly, Fy y(x, y) can be found for other values of x and y.

Fy y(x, y) is tabled /]

K Van Steen

12



Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

X2
1#
&
_§ 4} » » 8 “
i - /_\
& 3 | o w © ®
2
'g 2 | o » ® B
Q
% I | o N “ @
N
| | | |

— .‘|

1 2 3 4
First tetrahedron

K Van Steen 13



Probability and Statistics

Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

TABLE OF VALUES OF Fx, vy (x,y)

4<y 0 16 6 1% 1
I<y<4 0 16 16 16 16
2<y<3 0 ST 16 1% 15
1<y<2 0 16 1% 16 1%
y<l1 0 0 0 0 0

x.<'} 1 =Sx<2 2EX<D 3I<x<4 4<x
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Properties of bivariate cumulative distribution function F(-, -)

(i) F(—oo,p)= lim F(x, y) =Oforall y, F(x, —o0) = lim F(x,y) =0

(i1)

X = an Y- o0

for all x, and lim F(x, y) = F(c0, o) = 1.
o

If x; <x,and y, <y,, then P[x; < X < x,;y, < Y < p,]
= F(x3,y,) — F(x;, 1) — F(xy, ;) + F(x;, y,) > 0.

(1) F(x, y) is right continuous in each argument; that is,
lim F(x + h,y) = lim F(x,y + h) = F(x, y).
0<h-0 0<h—-0
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We will not prove these properties. Property (ii) is a monotonicity
property of sorts; it is not equivalent to F(x,, y;) < F(x,, y,) for x, < x,
and y, <y,. Consider, for example, the bivariate function G(x, y) defined

Note that G(x;, y,) < G(x,, y,) for x;, <x, and y, <y,,
yet G(l+el+e)—G(l+el—e—G(—¢l+e)+G(—el —g)=1-—
(I1—e)—(1—-¢)=2—1<0fore<i;s0G(x, y) does not satisfy property
(i1) and consequently is not a bivariate cumulative distribution function.

TABLE OF G(x, y)

sy 0 x 1

0<y<li 0 0 y

y<0 0 0 0
x<0 0<x=<1 i==x
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Definition  Bivariate cumulative distribution function Any function
satisfying properties (i) to (iii) is defined to be a bivariate cumulative
distribution function without reference to any random variables. /][]

Definition 3 Marginal cumulative distribution function If F x y(*s 7) 1S
the joint cumulative distribution function of X and Y, then the cumulative
distribution functions Fy(:) and Fy(-) are called marginal cumulative
distribution functions. 1]/

Remark Fy(x) + Fy(y) — 1 < Fy 4(x,y) < wz"'r}}(x)Ff(y)- for all x, y.
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2.2 Joint density function for discrete random variables

If X;, X,, ..., X, are random variables defined on the same probability space,
then (X, X,, ..., X,) is called a k-dimensional random variable.

Definition 4 Joint discrete random variables The k-dimensional ran-
dom variable (X, X,, ..., X;) is defined to be a k-dimensional discrete
random variable if it can assume values only at a countable number of

points (x,;. x,, ..., x;) in k-dimensional real space. We also say that
the random variables X, X,, ..., X, are joint discrete random variables.
JJI.l |I.' I."f ;-
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Definition 5 Joint discrete density function 1If (X,, X,, ..., X,) 1s
a k-dimensional discrete random variable, then the joint discrete density
function of (X, X,, ..., X)), denoted bY /x, xo x5 5., ), 1s defined
to be

Txo xo o xdX X2, oo x) = PIX | = x3X, = x5 ... X =x]
for (xy, x5, ..., x;), a value of (X,, X,, ..., X,) and is defined to be 0
otherwise. I/}

Remark ) fy,  y.(x;, ..., x,) = 1, where the summation is over all
possible values of (X, ..., X,). mr
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EXAMPLE Let X denote the number on the downturned face of the first
tetrehedronand Ythelarger of the downturnzd numbers in the experiment
of tossing two tetrahedra. The values that (X, Y) can take on are (1, 1),
(1, 2), (1. 3), (1,4), (2, 2), (2, ). (2.4), (3, 3).(3,4), and (4, 4); hence X and
Y are jointly discrete. The joint discrete density function of X and ¥
15 given in Fig. 4.
In tabular form it is given as

(x,y) (1, H|H 2}|{1 1}|{| 4;1 | 3}|{2 4}|{3 11!11 4.:{4 4)
Ty vlx¥) | | ‘s ] i i | ‘ | T i's s
or in another tabular form as
4 | % | % | 1& | T8
3 [ % | % | %
21 45 | %
I 6
y//x | 2 ] B! i

K Van Steen
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Theorem If X and Y are jointly discrete random variables, then
knowledge of Fy y(-. -) 15 equivalent to knowledge of [y 4(*, '). ;

PROOF  Let (v, ) (x5, ¥5), ... be the possible values of (X, Y ),
WSy, vl ) is given, then Fy plx, v) =3 fi 4(x,, v,). where the summa-
tion is over all 7 for which x; < x and v, < v. Conversely, il Foe o(, )18

given, then for (x;. y,). a possible value of (X, ¥),

Sy o0 ¥3) = Fy.v{X: ¥)— lim Fy ylx, = h, ¥)
O<h-s0

= lim Fy o(x, 5= 0
Q=0

+ hm Fy o(x; —h, v, — h). I

1 =<h—=10
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[Jefinition Marginal discrete density If X and ¥ are jointly discrete
random variables, then fy(*) and /() are called marginal discrete
density functions. More generally, let X, , ..., X, be any subset of the
jointly discrete random variables X, ..., X, then Fxiv iy e oo X0

BT
15 also called a marginal density. i
Remark If X, ..., X, are jointly discrete random variables. then any

marginial discrete density can be found from the joint density, but not
conversely, For example, if X and ¥ are jointly discrete with values
(Xpe Vb (X2, V2o o .o, then

fylx,) = E, T vlx;, ¥9) and Jy(ye) = E [y, v(X:, ¥:). it

Hixy = xgl i wi=wal
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EXAMPLE . We mentioned that marginal densities can be obtained from
the joint density, but not conversely. The following is an example of a
family of joint densities that all have the same marginals, and hence we
see that in general the joint density is not uniquely determined from
knowledge of the marginals. Consider altering the joint density given
in the previous examples as follows:

4 76 tE | Te—¢ 6 s
3 | d—e | dste | B
: T8 1%
] i's
_.F // | 2 3 4
x
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For each 00 < & =<', the above table celines a joint density. Note that
the marginal densities are independent of &, and hence each of the joint
densities (there is a different joint density for each 0 < ¢ <-%) has the

same marginals. [

We saw that the binomial distribution was associated with independent,
repeated Bernoulli trials: we shall see in the example below that the muliinomial
distribution is associated with independent, repeated trials that generalize from
Bernoulli trials with two outcomes to more than two outcomes.
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EXAMPLE Suppose that there are k + 1 (distinct) possible outcomes of a

trial. Denote these outcomes by J;, 45, ..., 541, and let p; = Ply;],
k+ 1

i=1,....k+ 1. Obviously we must have ) p,=1,justasp+¢=1in

i= 1
the binomial case. Suppose that we repeat the trial » times. Let X|
denote the number of times outcome .; occurs in the n trials,

i=1, ..., k+ 1. If the trials are repeated and independent, then the
discrete density function of the random variables X, ..., X} 1s
nl  k+1 — |
Iy ik Xps v X} =77 n P, (1)
l"[ .Tl:l-! =1
i=1
k+1 k
where x; =0, ...,nand Y x;=n. Notethat X, ,, =n— ) X,.
i=1 i=1

K Van Steen
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To justify Eq. (1), note that the left-hand side is P[X| = x,; X, = x;;
.. Xpoy = Xi41]: so. we want the probability that the » trials result in
exactly x, outcomes .,, exactly x, outcomes ., , ..., exactly x;;, outcomes
k+ 1
ses1» Where Y x;=n. Any specific ordering of these n outcomes has
1
probability pi': p3* -+ pi&*' by the assumption of independent trials,
and there are n!/x,!x,! " x;4! such orderings.
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Deefinition Multinomial distribution The joint discrete density func-
tion given in Eq. (1) 13 called the mudtinomial distribution, IHif

The multinomial distribution is a (k + 1) parameter family of distri-
butions, the parameters being n and py. ps. ... Pu. Py 15, like g In the
binomial distr:bution, exactly determined by poss =1 —py — p; — -4 = ;.

We might observe thataf X, X, . .... X, have the multinomial distribu-
tion given in Eq. (1), then the marginal distribution of X 15 a binomial distri-
bution with parameters # and p,. This observation can be verified by recalling
the experniment ol repeated, independent trials. Fach trial can be thought of
as resulting etther 1n outcome &, or not in cutcome &, , 1n which case the trial is
Bernoull, implying that X; has a binomial distribution with parametersnand p, .
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2.3 Joint density function for continuous random variables

Definition  Joint continuous random variables and density function The
k-dimensional random wvanable (X, X5, .... Xy) 15 defined to be a

k-dimensional cemrinuwous random varigble W and only if there exists a

function fy,  y.(*. ..., *} = 0 such that

= T P |
Fo  plxyy; )= | | Sy oty oo, gy duy L. duy (2)
forall (xy,....xu). fa. 30 ...y *) 18 defined to be a joint probability
density function Iy

* Note that a joint probability density function is defined as any non-

negative integrand satisfying the definition statements above. Hence, it is
NOT UNIQUE!
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Properties

As in the unidimensional case, a joint probability density function has
WO properties:

|;“} i . l .|F-'I-_II___\{."'.--I..-...-"ng_ll'-él-'-.|---Ilrnuﬁl.lj_-:I.
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About areas and volums

A unidimensional probability density function was used to find proba-
bilities. For example. for X a continuous random variable with probability
density fx{*) Plu< X< b] = fi}’ffl.ﬂ ex; that is. the area under f,(:) over the
iterval (a, &) gave Pla < X < b]: and, more generally, P[X € B] = fufvix) dx;
that is, the area under fy() over the set B gave P[X e B]. In the two-dimen-
sional case, rolume gives probabilities. For instance, let (X,. X.) be Jointly
contimuous random variables with joint probability density function
__f,t-,_l_.‘-_,{.rj. v;). and let R be some region in the x,x; plane; then P[(X,. X,) & R]
=jﬂj_.|"_.;,| v 0¥ X2) dx, dx;; that is, the probability that (X, X,) falls in the

region R s given by the volume under £ v.l " ') over the region R. In particu-
lar if R ={({x, x;):a < x;, b, 4; < x; <b,), then

M3

by
P[H| < .T."Ehl:ﬂ'_; < ..3[': = IIJP_] :J [Ir -‘r-'fn-'[:rt'l.’ll"tl}nr""-'[ d'xl‘

ara
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EXAMPLE Consider the bivariate function
flx. ¥} = Kix 4+ y)l, il o, iy) = Kix + v)lu(x, v),

where U={(x, »): O0<x< 1| and O <y< 1}, a unit square. Can the
constant A be selected so that f{x, y) will be a joint probability density
function? If K is positive, f(x, y) = 0,

o L ..

.
| | Kftx, »ydxdy=| | K(x+ y)dxdy

gl Y - i i
1 .l

=K [ I (x + y)dx dy

] ]
ol

=K | (3 +y)dy
i

= ki +5)

- I
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for K=1. So f(x, ¥) = (x+ ¥ 1,(x)o 1,(y) is a joint probability
density function.

Probabilities of events defined in terms of the random variables can
be obtained by integrating the joint probability density function over the
indicated region; for example

I At
P[UﬂX{{;;Ua::Y*::i]=J.: '[D(x-l-_-,-'}dxdy

= J‘: (§ - ';j) dy

=37 + 54

il

— 64>
which is the volume under the surface z = x + y over the region {(x, y):
0<x<d; 0<y<1i}in the xy plane. ]
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Theorem  If X and Y are jointly continuous random variables, then

knowledge of Fy y(-, -) is equivalent to knowledge of an fy y(-, *). The
remark extends to k-dimensional continuous random variables.

PROOF For a given fy y(-, *), Fx y(x, y) is obtained for any
(x, y) by

¥y X
Fxa(0)=| | fxu(w ) dudv.

For given Fy y(-, *), an fx, y(x, ) can be obtained by

{?EFL y(X, ¥)
ox 0y

fx (6, p) =

for x. y points, where Fy y(x, y) is differentiable. I

K Van Steen
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Definition =~ Marginal probability density functions If X and Y are
jointly continuous random variables, then fy(:) and fy(:) are called
marginal probability density functions. More generally, let X, , ..., X;
be any subset of the jointly continuous random variables X, ..., X;.
fh,, I.—m{xw ..., X; ) is called a marginal density of the m-dimensional

random variable (X;, ..., X; ). /]
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Remark If X,, ..., X, are jointly continuous random variables, then
any marginal probability density function can be found. (However,
knowledge of all marginal densities does not, in general, imply knowledge
of the joint density, as Example | below shows.) If X and Y are jointly
continuous, then

Jx(x) = |_ Tx,v(x,y)dy and Jy(y) = |_ Jx, ¥(X, y) dx (3)

since

dFy(x) d
dx  dx

fi(x) = [ [ ] ety ar) a‘u] = | Sz .

a | .
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EXAMPLE Let fx(x) and fy(y) be two probability density functions with
corresponding cumulative distribution functions Fy(x) and Fy(y). respec-
tively. For —1 <& < 1, define

Sx. v(x,y; ) = fx(x)fy(Y{] + t[2Fy(x) — L[2Fy(y) — 1]}. (4)

We will show (i) that for each « satisfying — 1 < a < 1. Sy y(x. p; o) is a
joint probability density function and (ii) that the marginals nff,, y(x, yi o)
are fy(x) and fy(y), respectively. Thus, {fxv(x, y;0): — 1l <a< |} will be
an infinite family of joint probability density functions, each having the
same two given marginals. To verify (i) we must show that fx v(x, y; @)
is nonnegative and, if integrated over the xy plane, integrates to 1.

Fx) frP1 + a2F y(x) — 1[2Fy(y) — 1]} = 0
if 1 > —a2Fy(x) — 1][2Fy(y) — 1]:
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but o, 2Fy(x) — 1, and 2F,(y) — | are all between — | and |, and hence
also their product, which implies fy ,(x, v ) is nonnegative. Since

-

a

_.f..th:“J dx = l - (J Sx. v(x, y; 2) c’fy) dx.

— —

it suflices to show that ,I"!{l} and _,f:r(.]'] are the |]1;1rgin;1|,~.; *‘l'.f.\-_ v(X, ¥; a).
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[ | Sy v(x, yia)dy

-l

-

‘ - Ty fy(OA1 + o 2F y(x) — 1][2F y(y) — 1]} dy

[

=) [ A0 dy + i (ORF(x) = 1] [2Fy(3) = 11£(3) dy

B L

= fy(x), noting that | [2Fy (y) — []frU'} dy

I
=f{2u— 1)du =0
0

by making the transformation u = Fy(y). [I]]

K Van Steen 39



Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

3 Conditional distributions and stochastic independence
3.1 Conditional distribution for discrete random variables

Definition Conditional discrete density function Let X and Y be
jointly discrete random variables with joint discrete density function
Jx.y(. *). The conditional discrete density function of Y given X = x,
denoted by fy x(* |x), is defined to be

_Jx v(x,p)

frix(y]|x) = : ; 5
Ty x) | X) 1) (2)

if fy(x) >0, where fy(x) i1s the marginal density of X evaluated at x.
Jyix(+ | x) is undefined for fy(x) = 0. Similarly,

,-"‘-: (X, ¥)
f(y)
if £,(y) > 0. m

¥ “ﬂ

fx;r{-ﬂ}’] =
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Definition Conditional discrete cumulative distribution If X and Y

are jointly discrete random variables, the conditional cumulative distribu-

tion of Y given X = x, denoted by Fyy(-|x), is defined to be Fyx(y|x) =
PL¥Y <yl X =x)}for f(x)> 0.

||I|"il-
il

Remark Fyy(y|x)= ) frx(y;]).

{Jiyi<y) |

K Van Steen
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EXAMPLE Return to the experiment of tossing two tetrahedra. Let X
denote the number on the downturned face of the first and Y the larger
of the downturned numbers. What is the density of ¥ given that X = 27

. 22 A 1
frr212) = jx_:f:'[zl - :J}; "2
: Heyld3) % 1
F=-Te %
Also,
frix(¥]3) = i fg ;ii o
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X
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Definition Conditional discrete density function Let (X,,..., X,) be
a k-dimensional discrete random variable, and let X, ,...,. X; and
X;,..... X; be two disjoint subsets of the random variables X,, ..., X,.

The conditional density of the r-dimensional random variable . PRI £8
given the value (x;,, ..., x;) of (X;,,..., X; ) is defined to be

Txss,, . i X, X5 s e s X | Xy <00 X5)

:f‘xn.-n.xi,.x“.---. Ij,{'ril* ooy i Xjio ""rjs)

f.t'hf...,x,-s{-‘:j.- s Xij,) | /11
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3.2 Conditional distribution for continuous random variables

Definition ¢ Conditional probability density function Let X and Y
be jointly continuous random variables with joint probability density
function fx y(x, y). The conditional probability density function of Y
given X = x, denoted by fy,x(- |x), is defined to be

fx, y(Xx, ¥)
fx[‘ﬂ

if fy(x) >0, where fy(x) is the marginal probability density of X, and is
undefined at points when fy(x) = 0.
Similarly,

f1r'|x{}"| x) =

fx ]"'("ri },} .
" ,r} = - ]ff{ r} ~> [L
fx]r(‘-’|} () ¥\

and is undefined if fy(y) =0
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Definition Conditional continuous cumulative distribution If X and
Y are jointly continuous, then the conditional cumulative distribution of Y

given X = x is defined as
¥
Fr|ﬂ]’|-’:] = | ff|x[3|l'] dz

for all x such that fy(x) > 0. I
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EXAMPLE SUPPDSE fI, vl X, }‘) = (X + }’}f{u. ”{I}f{gt 1](,}’]

- (x + Jr’:'f“}, 1 1{-1']!{[}, 11()"] x + y
I = Dl xr @)

for 0 < x < 1. Note that

¥

Fy x(y|x) = ] Sfrix(z|x) dz

rX + 2z

= dz = (x +2) dz
JGI—I—J'I‘ I—E-% I

= : (xy +y%2) forO<y<l. /1]
x+3
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3.3 Conditional probabilities of an event given a random variable

We have defined the conditional cumulative distribution Fy x(y|x) for either
jointly continuous or jointly discrete random variables. If X is discrete and Y
is any random variable, then Fy y(y|x) can be defined as P[Y < y| X = x] if x
is a mass point of X. We would like to define P[Y < y| X = x] and more
generally P[4 | X = x], where A is any event, for X either a discrete or continu-
ous random variable. Thus we seek to define the conditional probability of an
event A given a random variable X = x.

We start by assuming that the event A and the random variable X are
both defined on the same probability space. We want to define P[4 | X = x].
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If X is discrete, either x is a mass point of X, or it is not; and if x is a mass point
of X,

Pld: X = x)
P[X=x] °

PlA| X = %] =

which is well defined; on the other hand, if x is not a mass point of X, we are
not interested in P[4| X = x]. Now if X is continuous, P[4 | X = x] cannot be
analogously defined since P[X = x] = 0; however, if x is such that the events
{x — h < X < x + h} have positive probability for every # > 0, then P[4 | X = x]
could be defined as

P[A| X =x]= lim P[A|x—h< X <Xx + h]

0<h—-0

provided that the limit exists. We will take Eq. X as our definition of
P[A| X = x] if the indicated limit exists, and leave P[4 | X = x] undefined other-
wise.
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We will seldom be interested in P[4 | X = x] per se, but will be interested
in using it to calculate certain probabilities. We note the following formulas:

(i PLA] = Y. PLA|X = xfx(x)

if X is discrete with mass points x;, x,, ....
(i) P[A] = j P[A| X = x]fy(x) dx

-0

if X is continuous.

(iii) P[A:X € Bl=) PIAIX =uz]fx(x)

r,€B
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if X is discrete with mass points x;, x5, ....

(iv) P[4; X Bl = | P[A|X = x]fy(x) dx
“B

if X 1s continuous.
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3.4 Independence

e When we defined conditional probabilities early on, we were able to
introduce the concepts of “independence” and “dependence” of two
events

 We have now defined the conditional distribution of random variables.
Hence, similarly as in the “probability world” we should now be able to
define “independence” and “dependence” or random variables

e Although in this context one can / should talk about “stochastic”
independence, often the term “stochastic” is omitted
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Definition Stochastic independence Let (X,, X,, ..., X;) be a
k-dimensional random variable. X,, X,, ..., X, are defined to be
stochastically independent if and only if

k
Fxl.....xk{xn vy X)) = n Fy(x;)

i=1

for:all X, %04 5509 Xgs
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Definition Stochastic independence Let (X,, X,,..., X;) be a
k-dimensional discrete random variable with joint discrete density func-
tion fy, . x(, ..., ). X, ..., X, are stochastically independent if and

only if
k
fxt....,xk(xl: “ .y xk) P ljlf,l';(xil'

for all values (x, ..., x;) of (X4, ..., Xi). {1

Definition Stochastic independence Let (X,,..., X;) be a k-dimen-
sional continuous random variable with joint probability density function
Sxooox (s oo ). Xy, ..., X, are stochastically independent if and only
if
k
IXis s Xk Xigs o015 X} = fo;(xi}

for all x,, ..., x,. I/
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EXAMPLE Let X be the number on the downturned face of the first
tetrahedron and Y the larger of the two downturned numbers in the ex-
periment of tossing two tetrahedra. Are X and Y independent? Ob-
viously not, since fy x(2|3) = P[Y = 2| X =3]=0# f(2) = P[Y = 2] = .
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Theorem If X, ..., X, are independent random variables and
g1(*), ..., gi(*) are k functions such that ¥; =g(X;), j=1, ..., k are
random variables, then Y, ..., Y, are independent.

PROOF Note that if g;'(B;) ={z: g,(z) e B;}, then the events
{Y; e B;} and {X; € g; '(B))} are equivalent; consequently, P[Y, € B,; ...;

k
YieBl=P[X,eg;'(By); ... ; Xieg, (B)]=[]PlX;eg;"(B)]

j=1

k
= _[_]lp[ ¥, =Bl
=
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Application

EXAMPLE Let a random variable Y represent the diameter of a shaft
and a random variable X represent the inside diameter of the housing
that is intended to support the shaft. By design the shaft is to have
diameter 99.5 units and the housing inside diameter 100 units. If the
manufacturing process of each of the items is imperfect, so that in fact Y
is uniformly distributed over the interval (98.5, 100.5) and X is uniformly
distributed over (99, 101), what is the probability that a particular shaft
can be successfully paired with a particular housing, when * successfully

paired” is taken to mean that X — 4 < Y < X for some small positive
quantity A7
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Assume that X and Y are independent; then

w 20

PIX—h<Y<X]=| PIX—h<Y<X|X=x]fy(x)dx
.l[.'I'I
=| Plx —h < Y < x4} dx.
Y99
Suppose now that # = 1; then
x —98.5
5 for 99 < x < 99.5
I
P[x—l<:}’<.1:]=4ﬁ§ for 99.5 < x < 100.5
100.5 — (x — 1)
> for 100.5 < x < 101.
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Hence,
101
PIX-1<Y<X]=| Plx—1<Y<xPdx
Y99
809.5
=[x —98.5)4 dx
¥ 99
100.5 L 101
+ 1) dx + )(100.5 — x =1
gos T dxE| 31005 —x + D} dx = 7.
/1]
59
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4 A multi-dimensional world of expectations

4.1 Unconditional expectations

Definition Expectation Let (X,,..., X,) be a k-dimensional ran-
dom variable with density fy, (-, ..., ). The expected value of a
function g(-, ..., -) of the k-dimensional random variable, denoted by
Slg(X,, ..., Xi)), is defined to be

clg(Xy, ..., X)) = Zg{-‘ft» oo X fxy, X s X0) (18)
if the random variable (X, ..., X,) is discrete where the summation is
over all possible values of (X;, ..., X,), and

Elg(X,, ..., Xp)]

:j _J ) ‘J‘ g(xl""1":k}fxl ..... X k(xh---.xk}dxl ﬂixk (19)

if the random variable (X, ..., X}) is continuous.

In order for the above to be defined, it is understood that the sum and
multiple integral, respectively, exist.
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Theorem In particular, if g(x,, ..., x;) = x;, then
lg(Xy, ..., X))l =6[X;] = Hx, -

PROOF Assume that (X,, ..., X;) is continuous. [The proof for
(X, ..., Xj) discrete is similar.]

~ Q0 o A0

S9X s X =| [ | xifxex(xn s ) dxy - d,

-0 -0 Vo=

= | x,-_ﬁ-i{x,-] dxj - éi’[‘1'{1]

Theorem  If g(x,, ..., x) = (x; — &[X;])?, then
Elg(Xy, ..., X)) = E[(X; — éa[Xi])Z] = var [X;]. /1]
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Remark {S‘lz il Xy v X,‘.}] =) ¢;6lg(Xy, ..., X;)] for constants
| |

€ty €y viney Ciggs I/
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EXAMPLE = Consider the experiment of tossing two tetrahedra. Let X
be the number on the first and Y the larger of the two numbers. We gave
the joint discrete density function of X and Y

E[XY] =) xypfx v(x,)
=1-1G%) +1-2(7) +1-3(:%) +1-4(:)

+2-2(%) + 2 3(%) + 2-4(i%) + 3 3%)
+ 3 -4(7%) + 4 4(5%) =132

X+ Y]=(1+1)s+ U+ +0+3)5+ U +4)%
+24+DE+Q2+ DL+ +DL+C+3)5
+ (3 +4)s + @+ 4% =32

&[X] =3, and [ Y] =32; hence £[X + Y] = &[X] + 6[Y]. 1
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EXAMPLE Let the three-dimensional random variable (X,, X,, X,) have
the density

fx,.xhxg.{xis Xy, X3) = 8X1X; X3 Iu}. 1'1(Il}f{ﬂ. |](—7‘51]f{{:~.n{-”53}-

Suppose we want to find (i) &[3X; + 2X, + 6X;], (ii) &[X,X,X,], and
(i) &[X;X,]. For (i) we have g(x;, x5, x3)=3x; + 2x, + 6x; and
obtain

g[g(Xi, Xl‘-' Xa,)] - €[3X1 + ZXE + 6X3]
= fo [6 Jo Bxi + 2x; + 6x3)8x,x, x5 dx, dx, dx, =3,
For (1), we get
X, X, X,] = j[l} j-:]] I-:I:- 3-"512-":22-""3.1 dx, dx, dx; = 5+,

and for (iii) we get &[X, X,] = 4. {1
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4.2 Covariances and correlations

Definition Covariance Let X and Y be any two random variables
defined on the same probability space. The covariance of X and Y,
denoted by cov [X, Y] or oy y, is defined as

cov [X, Y] = (X — ux(Y—py)]

provided that the indicated expectation exists. ]

Definition Correlation coefficient The correlation coefficient, de-
noted by p[X, Y] or py y, of random variables X and Y is defined to be

_ cov [X, ¥]

Px v =

Ox Oy

provided that cov [X, Y], oy, and oy exist, and oy >0 and oy > 0. ////
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Remark cov[X, Y]=6X — uy (Y — uy)] = E[XY] — pypiy.

PROOF  &[(X — ux)(Y — py)] = 6[XY — py Y—py X + piy pty]
= E[XY] — ux E[Y] — py E[X] + pxpy
=6[XY] — pypy.

K Van Steen 66



Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Both the covariance and the correlation coefficient of random variables
X and Y are measures of a linear relationship of X and Y in the following sense:
cov [X, Y] will be positive when X — uy and Y — u, tend to have the same sign
with high probability, and cov [ X, Y] will be negative when X — uy and Y — u,
tend to have opposite signs with high probability. cov [X, Y] tends to measure
the linear relationship of X and Y; however, its actual magnitude does not have
much meaning since it depends on the variability of X’ and Y. The correlation
coefficient removes, in a sense, the individual variability of each X and Y by
dividing the covariance by the product of the standard deviations, and thus the
correlation coefficient is a better measure of the linear relationship of X and Y
than is the covariance. Also, the correlation coefficient is unitless and,

—-‘lpr.ySl.

K Van Steen 67



Probability and Statistics Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

e Several sets of (x, y) points, with the correlation coefficient of x and y for
each set, are shown in the following plot. Note that the correlation reflects
the noisiness and direction of a linear relationship (top row), but not the
slope of that relationship (middle), nor many aspects of nonlinear
relationships (bottom).

 Remark: the figure in the center has a slope of 0 but in that case the
correlation coefficient is undefined because the variance of Yis zero
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EXAMPLE Find py y for X, the number on the first, and Y, the larger of
the two numbers, in the experiment of tossing two tetrahedra. We would
expect that py y is positive since when X is large, Y tends to be large too.

We calculated &[XY], &[X], and &[Y] and obtained
E[XY] =18, 6[X]=3,and [ Y] =42 Thuscov[X,¥] =135 — 3. 30
=12 Now &[X*]=32 and &[Y*]=12%%; hence var[X]=$ and

var [Y] =23. So,

2
== I
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4.3 Conditional expectations

Definition Conditional expectation Let(X, Y)be a two-dimensional
random variable and g(-,-), a function of two variables. The conditional
expectation of g(X,Y) given X = Xx, denoted by &[g(X,.Y)| X = x], 18
defined to be

o0

Slg XN X=x]=| g(x. ) fuxy|x) dy

if (X, Y) are jointly continuous, and
Elg(X,Y)| X = x] =}, g(x. y)frix(y;]%)

if (X, Y) are jointly discrete, where the summation is over all possible
values of Y. I/
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Theorem Let (X, ¥Y) be a two-dimensional random variable: then
Slg(Y)] = &[6[g(Y)| X,
and in particular
Y] =8[8[Y] X]I

f 1]
|II lllr II Ill
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Partial proof

o 30

6Lélg(Y) | XTI = 6[h(X)] = | h(x)fx(x)dx

o

= [ STo()1x1fx(x) dx

¥ —n

s [ 400

=7 ] owtmatix ay |0 ds

1-__,:.: -

o 0 » 30

- I g f, rix(y | x) fx(x) dy dx

¥o—an * —on

o e

B [ | f II :g(}"]fx,r(I, y)dy dx

o § f—

= &[g(Y)].
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Definition Conditional variance The variance of Y given X = x 1s
defined by var [Y| X = x] = &[Y?| X = x] — ([ Y| X = x])%. 111

Theorem  var [Y] = &[var [ Y| X]] + var [£[ Y| X]].

PROOF

Elvar [Y| X]] = 6[&[Y?| X]] — S[(&[ Y| X])*]
= 6[Y2] — ([ Y))? — €(E[Y| XD?) + ([ Y))?
= var [Y] — E[(&[ Y| XD?] + (€[&1 Y| X1)?
= var [ Y] — var [&[ Y| X]].
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Additional useful “to-knows”

Theorem Let (X, Y) be a two-dimensional random wvariable and
g,(*) and g,(-) functions of one variable. Then

(1) Elgi(Y) +g20Y)| X =x] =E[gy(Y)| X =x] + E[g,(Y)]| X = x].
() &lgi(Y)g(X)| X = x] = g,(x)E[g,(Y)| X = x].

Definition | Regression curve &[Y|X = x] is called the regression
curve of Y on x. It is also denoted by py|x—,=py|,- /1]

 We will see more about regression in a subsequent chapter
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4.4 Joint moment generating functions and moments

Definition Joint moments The joint raw moments of X,, ..., X,
are defined by &F[X] X3 - - X{*], where the r;’s are 0 or any positive
integer; the joint moments about the means are defined by

(X, — px )t (X — Hx, )™ ]

Remark If r; =r; =1 and all other r,’s are 0, then that particular joint
moment about the means becomes &[(X; — puy )(X; — x )], which is just
the covariance between X; and X . 1]
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Definition Joint moment generating function The joint moment
generating function of (X, ..., X;) is defined by

k
mf;,...,xk(fli ..y I.F:) = tgl:exp Z t_ir X_;]!

i=1
if the expectation exists for all values of ¢,, ..., #, such that —h < t;<h
for some A >0, j=1....,k. [/

|

Remark my(t)) = my y(1;,0) = limmy (1, t,),andmy(t,) = my (0, 1,)

2 =0
= limmy y(t, 1,); that is, the marginal moment generating functions can
ty—0
be obtained from the joint moment generating function. {1
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The rth moment of X; may be obtained from my,  y(#;, ..., ) by
differentiating it r times with respect to ¢; and then taking the limit as all the ¢’s
approach 0. Also &[X} Xj] can be obtained by differentiating the joint moment
generating function r times with respect to ¢; and s times with respect to ¢; and
then taking the limit as all the #’s approach 0. Similarly other joint raw
moments can be generated.
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4.5 Independence and expectations

Theorem [f X and Y are independent and g,(-) and g,(*) are two
functions, each of a single argument, then

E19:(X)g2(Y)] = €[g,(X)] - E[gx(Y)].

PROOF We will give the proof for jointly continuous random
variables.

a OO n 00

S19:(X)g(N1=| | 9:()9:0)fx,(x. ) dx dy

l-__:.'l'__

[ 6:)920)x(e(y) dx dy

L —_ | —
o

i g,(x)fx(x) dx - er _gz{}")fr{}’) dy

= 6g(X)] - €1g2(Y)]. /11

K Van Steen 79



Probability and Statistics

Chapter 4: Distributions in the presence of multi-dimensionality and functions of random variables

Corollary If X and Y are independent, then cov [X, Y] = 0.
PROOF Take g,(x) = x — uy and g,(y) =y — Hy:
cov [X, Y] = E[(X — pux)(Y — py)] = €[9:(X)g,(Y)]
= &[g,(X)]6[g2(Y)]
— E[X — iyl E1Y — ] =0 since E[X — pgl =0. [/
Definition

Uncorrelated random variables Random variables X and
Y are defined to be uncorrelated if and only if cov [X, Y] = 0.

1/

Remark The converse of the above corollary is not always true; that is,
cov [X, Y] =0 does not always imply that X and Y are independent,
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EXAMPLE Let U be a random variable which is uniformly distributed
over the interval (0, 1). Define X =sin 2nU and Y = cos 2nU. X and
Y are clearly not independent since if a value of X is known, then U is
one of two values, and so Y is also one of two values; hence the conditional
distribution of Y is not the same as the marginal distribution. &[Y] =
fo cos 2nu du = 0, and £[X] = [ sin 2nu du = 0; so cov [X, Y]= E[XY] =
[0 sin 2au cos 2nu du = 4 (g sin 4nu du = 0. 1]
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Theorem = Two jointly distributed random variables X and Y are
independent if and only if my y(1;, t;) = my(t;)my(t,) for all ¢, t, for
which —h <t, <h,i =1, 2, for some h > 0.

PROOF [Recall that m(t,) is the moment generating function of X.
Also note that my(f,) = my y(#;, 0).] X and Y independent imply that
the joint moment generating function factors into the product of the
marginal moment generating functions by taking g,(x) = e"*
and g,(y) = e€?*. The proof in the other direction will be omitted.

il
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Cauchy-Schwarz inequality

Theorem | Cauchy-Schwarz inequality Let X and ¥ have finite
_secnnd moments; then (§[XY])* = |£[XY]|? < £[X?]&[ V2], with equality
if and only if P[Y = ¢X] = | for some constant c.

PROOF The existence of expectations &[X], &[Y], and &[X Y]
follows from the existence of expectations &[X?] and &[Y?]. Define
0 <A(t)=E[(tX — Y)*] = E[X°1% — 28[X Y]t + & Y?]. Now A(t) is a
quadratic function in ¢ which is greater than or equal to 0. If A(t) > 0,
then the roots of /() are not real; so 4(&[XY])? —46[X2]€[Y?] <0,
or (E[XY])? <&[X?16[Y?). If h(f)=0 for some . say I,, then
&[(to X — Y)*] =0, which implies P[t, X = Y] = 1. /11
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F?Drnllary |px,v| < 1, with equality if and only if one random variable
1s a linear function of the other with probability 1.

PROOF Rewrite the Cauchy-Schwarz inequality as |1E[UV]| <
JEU?IE[V?), and set U = X — pyand V=Y —yu,.
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5 Highlight: The bivariate normal distribution

5.1 Density function

Definition Bivariate normal distribution Let the two-dimensional
random variable (X, Y) have the Joint probability density function
1

fx, r (X, ) =f(x, ¥)=

2noy t:rh/(l — p?

e 5 1
::-::ﬂ:h:p’- : ; [(I *”-’f) __pr_ﬂx J-"'Hr+ Y — py)?
2(1 - p ] JX L'TI ﬂ'r G"},

for —o0 < x < 0, —00 <y < oo, where oy, 6y, sy, y, and p are con-
stants such that —l1<p<1, O0<oay, 0<oy, —o0 <y < oo, and
— 00 < iy < 0o, Then the random variable (X, Y) is defined to have a
bivariate normal distribution.
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